Farmers' preferences over alternative AECS designs. Do the ecological conditions influence the willingness to accept result-based contracts?

Canessa C.*, Venus T., Wiesmeier M., Mennig P., Sauer J. *Chair of Agricultural Production and Resource Economics, Technical University of Munich (TUM) *Contact: carolin.canessa@tum.de

EFFECT Annual Meeting 2023

Introduction

Objective: contribute to the ongoing discussion on whether it better to pay farmers for actions or results, or both.

- Discrete Choice Experiment (DCE) to:
 - Investigate preferences for alternative contract designs;
 - Link preferences to farm structural and ecological characteristics.

Question 1 Do farmers prefer result or hybrid-based schemes over action-based schemes?

Question 2 Do the ecological conditions and farm structure influence farmers' willingness to adopt the different approaches?

Methods

Case study

- Federal State of Bavaria
- Different approaches already exist (KULAP 2015-2022)

Sample

- In person data collection.
- Sample of 107 grassland farms.

Ecological data

- Species richness recorded plot level using method of pilot scheme B40.
- Farm level biodiversity index:

Biodiversity Index_i =
$$\frac{\Sigma_{j=1 n_{ij}*area_{ij}}^4}{grassland area_i}$$

255	- m
 Farms Sub-regions Districts and independent 	dent citie
3	
and a start	

Methods Experimental design

Attribute selection based on:

- KULAP offer
- Q-methodology

Combination of attibutes determines the approach:

- Action-based (ABS)
- Result-based (RBS)
- Hybrid-based (HBS)

Contract attributes	Attributes levels	Description	
Practice	Late mowing (1.07)	Binary	- 14
	Maximum LSU (1.4 LSU/ha)		
	None		
Baseline payment (€/ha)	0€, 100€, 200€, 250€	Continuous	
Ecological result	0, 2, 4 or 6 indicator species	Continuous	
Ecological payment(€/ha)	0€, 100€, 200€, 300€	Continuous	
Monitoring	Farmer	Binary	
-	Authority	-	

Methods Analytical framework

Three steps approach:

- Mixed logit (Train, 2009) 1.
- **2.** Latent class (Boxall and Adamowicz, 2002)
- Land allocation analysis (Kuhfuss et al. 2016) 3.

Two stage methodology to control for selection bias

- farmer indicated intensity of participation in hectares $y_{nit} \ge 0$
- land enrolled is expected to be $y_{nit} = Z_{nit} \alpha + u_{nit}$
- predicted probabilities of choosing each alternative from mixed logit included in OLS regression as correction parameters.

	MXL I			MXL	ı II			
	Mean SD		Mear	1	SD			
Parameters	Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.
Total payment	0.005***	0.001			0.005***	0.0009		
Late mowing (base: none)	-2.359***	0.399	1.197***	0.344	-2.242***	0.364	0.916**	0.311
Maximum LSU (base: none)	-1.220***	0.362	1.726***	0.284	-1.255***	0.343	1.684***	1.850
Indicator species	-0.487***	0.078	0.244***	0.059	-0.456***	0.076	0.238***	0.238
Monitoring (base: authority)	0.537***	0.174	0.734***	0.243	0.522***	0.163	-0.489*	-0.545
ASC: Result-based (RBS) ^a	0.476	0.399	1.012***	0.327	-0.027	0.433	1.024***	0.327
ASC: Hybrid-based (HBS) ^a	0.681*	0.402	1.372***	0.360	0.694*	0.416	0.657*	0.360
RBS*BI			6		0.215*	0.123	0.048	0.765
ΠΟΣΤΟΙ					0.048	0.119	0.010	0.929
Log likelihood	-576.628				-546.230			
Pseudo-R2								
AIC	1179.257				1126.461			
N. obs.	1926				1818			
N. farmers	107				101			
^a The alternative specific constants were coded as the result based (RBS) and hybrid based (ABS) option respectively.								
Note: *, **, *** represent significance level at 10, 5, and 1 percent, respectively.								

Results Latent class

	Class	s I
	Coef.	
Total navment	0.0001	
Late mowing (base: none)	-1.774***	
Maximum LSU (base: none)	-1.131***	
Indicator species	-0.234***	
Monitoring (base: authority)	0.821***	
ASC: Result-based (RBS)	0.293	
ASC: Hybrid-based (HBS)	0.891**	
Class share	(0.67)	
Membership variables		
Full time	1.291*	
Participation AECS ⁷	-2.076**	
Dairy farms	1.646**	
Milk cows	-0.0009	
Constant	0.579	
Log-likelihood	-552.029	
N. obs.	1926	
Farmers	107	

	Class II			
Std. Err.	Coef.	Std. Err.		
0.0009	0.008***	0.001		
0.349	-0.041	0.686		
0.338	1.623**	0.655		
0.059	-0.334***	0.090		
0.171	-0.096	0.223		
0.385	1.393**	0.679		
0.370	-0.416	0.758		
	(0.33)			

- 0.728
- 0.894
- 0.785
- 0.008
- 0.862

Results Land allocation decision

Dependent: % of grassland allocated	Coefficient	Std. error
Total payment	0.0008***	0.0002
Late mowing	-0.324***	0.053
Indicator species	-0.005	0.016
Monitoring	-0.151***	0.0417
Result-based (RBS)	-0.226**	0.092
Hybrid-based (HBS)	-0.031	0.082
Biodiversity index (BI)	0.046***	0.010
m1	⁸ -0.195***	0.076
m2	-0.254***	0.082
m3	-0.483***	0.175
Intercept	-1.269**	0.504
N. obs.	386	

Discussion & Conclusions

Findings

No clear preference for any approach. 1

Q.

- Payment mechanism is not only driver of farmers' choices.
- Applicability of practices, achievability of outcomes, and farm structure better explain preferences.
- Farms with higher biodiversity tend to 2 accept RBS more frequently, and are willing to enrol a greater share of their land.
 - Awareness about farms' ecological potential influences uptake of RBS.

- Targeting farmers and tailor payments based on scheme's primary objectives.
- Some practices make farming impossible.
- farms.
- RBS to induce maintainance by extensive farms.
- Need to consider a potential lack of additionality.
- On-site technical advice to help farmers
 - assessing their plots' is needed.

Implications

HBS to induce extensification by intensive

Thank You

10

Carolin Canessa Technical University of Munich carolin.canessa@tum.de

Appendix

Sample overview

Variables

Male (%)

Age by classes (%)

Successor (%)

Agricultural education (%) Experience (years)

Average farm size (ha) Average arable area (ha) Average grassland area (ha) Share of grassland Share of rented land Full-time farms (%) Organic farms (%) Dairy farms (%)

Participation in AECS (%)

11

Re: Act Not pa

Population

Ο

Sources:

^a Destasis (2020) – Note: takes into account only individual companies.

^b StMELF (2022) – Note: refers to farms with milkcows farming.

^c Destatis (2021) – Note: refers to all AECS payments, both for grassland and arable land.

^d Destasis (2020) – Note: refers only to farms managing permanent grassland areas.

	Sample ¹	Bavaria
	86.9	-
≤55years	54.2	55.9ª
≥55years	45.8	44.1ª
	50,5	43.6 ª
	85.9 (34.7)	63.0 ^b
	22.4 (13.6)	-
	68.02 (64.7)	30,7 b
	39.4 (32.8)	28.57° 12.22 ^b
	57 3 (31 7)	13.55 34 1 ^b
	46.1 (23.5)	51.0 ^b
	73.8	43.3 ^b
	22.5	12.1 ^b
	69	34 ^b
	59.8	68.0°
sult based	18.7	
ion based	41.1	
articipants	40.2	
	107	75 309 ^d
Ansbach	23	2 392 ^d
Hof	16	843 ^d
Landshut	21	1 743 ^d
Oberallgäu	18	2 059 ^d
Regen	22	925 ^d

Appendix Biodiversity index

Variable	Defining	Mean (SD)	Min-Max	Total
Internetively used meandows (he)			0.07 5	2102
Intensively used meadow (ha)	>2 cuts	18.58 (19.29)	0-97.5	2182
Extensively used meadow (ha)	≤2 cuts	6.38 (11.95)	0-90	652
Intensively used (mowing) pasture (ha)	>cuts or >1.4 LSU	2.4 (6.67)	0-40	278
Extensively used (mowing) pasture (ha)	≤cuts or ≤1.4 LSU	6.26 (37.02)	0-425	826
N. of species		2.58 (2.54)	0-13	
Biodiversity index		1.74 (1.86)	0-10.28	
Biodiversity index result-based farmers		2.39 (2.64)	0-10.28	
Biodiversity index action-based farmers		1.36 (12.34)	0-5.28	
Biodiversity index non-participants		1.48 (1.60)	0-5.27	
N. of plots			141	
N. of obs.			101	

Appendix

Willingness to accept

Estimated WTA values:

- Late mowing = 469.25 €/ha/year •
- 4 species RBS = 388 €/ha/year

- Late mowing = 517.3 €/ha/year •
- 4 species RBS = 367.3 €/ha/year

Attributes	Mean (€/ha/year)	Confidence interval	
Late mowing	-469.25	-347.43	-681.30
Maximum LSU	-242.61	-123.75	-358.58
Indicator species	-97.02 ¹³	-60.59	-160.44
Monitoring	106.83	209.63	38.35
HBS	94.82	362.05	54.25

Revealed WTA (mean):

Appendix

References

Boxall, Peter C.; Adamowicz, Wiktor L. (2002): Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach. In Environ Resource Econ 23 (4), pp. 421–446.

Burton, Rob J.F.; Schwarz, G. (2013): Result-oriented agri-environmental schemes in Europe and their potential for promoting behavioural change. In Land Use Policy 30 (1), pp. 628–641.

Derissen, Sandra; Quaas, Martin F. (2013): Combining performance-based and action-based payments to provide environmental goods under uncertainty. In Ecological Economics 85, pp. 77–84.

Gibbons, James M.; Nicholson, Emily; Milner-Gulland, E. J.; Jones, Julia P. G. (2011): Should payments for biodiversity conservation be based on action or results? In Journal of Applied Ecology 48 (5), pp. 1218–1226.

Kuhfuss, Laure; Préget, Raphaële; Thoyer, Sophie; Hanley, Nick (2018): Nudging farmers to enrol land into agri-environmental schemes: the role of a collective bonus. In European Review of Agricultural Economics 43 (4), pp. 609–636.

Matzdorf, Bettina; Lorenz, Jana (2010): How cost-effective are result-oriented agrienvironmental measures?—An empirical analysis in Germany. In Land Use Policy 27 (2), pp. 535–544.

Train, Kenneth E. (2009): Discrete Choice Methods with Simulation. 2nd ed. Cambridge: Cambridge University Press

White, Ben; Hanley, Nick (2016): Should We Pay for Ecosystem Service Outputs, Inputs or Both? In Environ Resource Econ 63 (4), pp. 765–787.